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Motivation

The numerical weather prediction over high-latitude regions
is special and particularly challenging.
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domain.
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EPS Contributes to the Global Op;;;io’nal Satellite Observation System
In order to keep the model on track with the true @ VN

atmospheric flow, observations are integrated i.e,,
assimilated in the numerical models.

Over high-latitude regions, the available conventional
observations are sparse, therefore, the satellite data
assimilation is of high importance.
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Motivation

The representation error as defined by
Janji¢ et al. (2017) consists of error due
to unresolved scales and processes,
forward model or observation-operator
error and pre-processing or quality-
control error.

The unresolved scales or mismatch
between data and model is explained

mostly fro m the glo ba I_ or 7 The cparison of observed (Left panel) and simulated (ght panel)
. . . SEVIRI satellite images. The simulated image was derived from the Met Office
lOW-reSO lut|0 n mOdelS p0| nt Of View. 4.4km horizontal resolution NWP model over Europe. Figures are taken from

the EUMETSAT NWP SAF portal (EUMETSAT, 2016)
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representation error in high-resolution
models and it can be described as an
error due to unobserved scales and

On the other hand, there is also
processes.

This error is generally neglected.

Comparison of AROME-Arctic wind vectors on 2.5 km grid (left
panel) and ASCAT Coastal product (right panel) wind barbs with 12.5 km grid

for a given case study from paper I.
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representation error in high-resolution
models and it can be described as an
error due to unobserved scales and

On the other hand, there is also
processes.

This error is generally neglected.

Comparison of AROME-Arctic wind vectors on 2.5 km grid (left
panel) and ASCAT Coastal product (right panel) wind barbs with 12.5 km grid

for a given case study from paper I.
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Motivation

Additionally, it is not possible to analyse adequately R NN, i
small scales over the open ocean because physical W%‘}%ﬂ
constraints like orography and four-dimensional W\ ‘X\\Q@\
observations are not available in regional models. \ {:

N\
If the mesoscale assimilation system has not enough \\\\\%é;g

constraints, dynamical model imbalances might appear
on the small scales in particular and may interfere with \
the analysis of the larger scales that can be determined

(Stoffelen et al., 2020). “ =
i
A
Limited »@Z/

coverage

ASCAT observations inside the AROME-Arctic
domain



Objectives: to explore satellite footprint representation

|
e Investigate scatterometer ocean surface winds and Complexity in the footprint operators >
a special footprint operator called supermodding;

e Investigate wind profiles of Aeolus satellite mission
and its proper footprint operator;

e Investigate microwave satellite radiances and its
complex footprint operator.
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J(x) = Ju(x) + Jo(x) =
= =) B (x = x) + oy — H(x) TRy — H()),

Xa = argmin J(x)
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J(x)

= %(x = xb)TB_l(x —Xp) + %(y @))TR_I ¥ @

Xa = argmin J(x)

Tp(x) + Jo(x)
(

)

The link between the observation and
the model is not trivial.

The observation operator H maps
information from state space to
observation space.
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Default assimilation as
Point observation

In this forward problem, the
observation operator can be the
source of the representation error
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Image: RIKEN DA
research team

J(x) = Jp(x) + Jo(x) =
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Xa = argmin J(x)
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Default assimilation as
Point observation

Footprint operator

In this forward problem, the
observation operator can be the
solution for the representation error



Scatterometer supermodding
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implementation




Scatterometer supermodding
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Footprint operator
implementation
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Scatterometer ocean winds and the supermodding operator



Scatterometer supermodding

The amplitude of the mesoscale
spectrum is reasonably resolved in
AROME-Arctic, however, the predicted
small-scale phenomena can be out of
phase.

AVHRR day/night satellite image AROME wind vectors

ASCAT wind barbs



Scatterometer supermodding
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Scatterometer
supermodding
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AROME wind vector

T2°N fo..

Analysis increments: Horizontal interpolation
Parameter: Wind u-component; Model Level:65
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The analysis increments of the default
ASCAT assimilation show relatively
sharp and localised increments

It means that the coarse-resolution
scatterometer observations constrains
the smallest scales of the model



Scatterometer
supermodding
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However, by the use of supermod-
ding operator, the increments get
smoother meaning that the
observation has impact on larger
scales mostly.

The analysis increments of the default

ASCAT

assimilation show relatively

sharp and localised increments

It means that the coarse-resolution
scatterometer observations constrains
the smallest scales of the model
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Scatterometer supermodding

Standard deviation of observation minus background departures (O-B) provide information on the
combined observation and background errors.

Scatterometer supermodding can reduce the standard deviation of O-B by removing the (background)
error variance at small scales. The 30 km supermodding size can provide 4-5% reduction in the standard
deviation of O-B and further decrease (up to 8-11%) with larger supermodding sizes.

S'I‘DV(d";) STDV(d}) S'I‘DV(d:) STDV(d3)
Size (km) No. of obs. for uyom for uyom for vigm for vigm
Default 34130 2.1460 1.3826 2.3106 1.5335
30 34097 2.0515 1.7110 2.2197 1.8141
60 34002 1.9951 1.8522 2.1479 1.9274
100 33840 1.9880 1.9001 2.0902 1.9596
135 33694 2.0374 1.9457 2.0786 1.9802
175 33564 21271 2.0035 21125 2.0161

225 33486 2.2809 2.0787 2.1944 2.0660



Scatterometer supermodding
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Pressure Level (hPa)

Scatterometer supermodding

Observing system experiment
1)Default vs Supermodding operator
2)Comparison of different averaging sizes

The use of 30 km supermodding size has mostly
positive impact on wind speed and temperature
forecasts.

The use of 60 km supermodding showed statistically
significant positive impact in wind speed, in
temperature, and in geopotential height.
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Aeolus wind profiles and the footprint operator



Aeolus Rayleigh-clear footprint operator

Pressure (hPa)
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Relatively small but consistent
reduction (~1%) in O-B standard
deviation was obtained by the use
of Aeolus footprint operator -
Aeolus high noise level



Pressure (hPa)

Aeolus Rayleigh-clear footprint operator
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of Aeolus footprint operator -

Aeolus high noise level

102,

The footprint operator is the most
efficient when the variability in the
model field is larger than the
observation error (4-5 m/s).

‘ .. PL case study (25th of November,
3 4 5 6 7 2019) and model wind
Aeolus wind (departures) [m/s] . are
v-component variability along
horizontal 87.5 km segments

103




Aeolus Rayleigh-clear footprint operator

In the case of the Aeolus footprint operator, neutral impact on wind speed and wind direction forecasts,
and positive impact on geopotential height forecasts were obtained in the verification scores.

Wind Speed +12h Wind Direction +12h Temperature +12h Geopotential Height +12h Wind Speed +24h Wind Direction +24h Temperature +24h Geopotential Height +24h
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This might be explained by the high noise level of Aeolus Rayleigh-clear (instrument noise is much higher
than the representation error).



Microwave cross-track scanning instruments and the footprint operator



Microwave radiance footprint operator

A prototype implementation for microwave cross-track scanning instruments was explored with AMSU-A
and MHS radiances.

AMSU-A footprint operator AMSU-A default obs. operator
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Microwave radiance footprint operator

A prototype implementation for microwave cross-track scanning instruments was explored with AMSU-A
and MHS radiances.

AMSU-A footprint operator AMSU-A default obs. operator
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Microwave radiance footprint operator

A prototype implementation for microwave cross-track scanning instruments was explored with AMSU-A
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Microwave radiance footprint operator

A case study was carried out to identify areas of the highest sub-footprint variability for both AMSU-A and
MHS data.

AMSU-A channel 5 AMSU-A channel 6 AMSU-A channel 7
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Microwave radiance footprint operator

OmB Departures OmB Departures
. . . Sensor: AMSU-A; Date: 02/03 - 25/03/2020 Sensor: MHS; Date: 20/01 - 31/03/2021
The m|Crowave radlance footp” nt Operator 91 --@- Default observation operator A 51 --@- Default observation operator Kd
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provides consistent reduction in O-B
standard deviations similarly to previous ]
studies.
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571 541
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Future outlook



Future outlook

- Ina high-resolution state-of-the-art assimilation system, advanced solutions like superobbing or
footprint operators are required to reduce representation error.

- Future developments of radiance footprint operator: to take into
account the radiance antenna pattern, the representation of effective
field-of-view (swept by the antenna beam), and to study future
micro-satellites (AWS, Sterna).

- Another area of application can be to use the supermodding operator
in ensemble prediction systems in order to account for uncertainties
and to generate perturbations in the ensemble data assimilation (EDA)
procedure. By the use of the supermodding operator, one can design

—0.00004-0.00002 0.00000 0.00002 0.00004

the observation operator for the ensemble system which aims to weights a
quantify the uncertainties incorporated in the unobserved scales and
processes in data assimilation.



Future outlook

- Test thoroughly the developed footprint operator with more advanced assimilation schemes (hourly
RUC or time-consistent 4D-Var, 4D-EnVar).

AMSU-A footprint operator, average sampling dist.: 2.51 km AMSU-A footprint operator, average sampling dist.: 6.53 km AMSU-A footprint operator, average sampling dist.: 16.33 km
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Final remark
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